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A method is outlined to study the structure property relationship in semicrystalline fibers 
involving (a) the characterization of structure in terms of the two phase amorphous- 
crystalline model (size, concentration and orientation of the crystallites, etc.), (b) the 
analysis of viscoelastic responses in terms of Takayanagi models, and (c) the analysis of 
diffusion assuming that crystals are essentially impermeable to large dye molecules. The 
method, which does not require an accurate estimate of the properties of a “completely” 
amorphous polymer, is applied to a series of oriented nylon 6 fibers. The study, which 
confirms the validity of the derived equation to describe the diffusion process in semi- 
crystalline polymers above the glass transition temperature, leads to a quantitative 
representation of the “efficiency” of crystal reinforcement as a function of the degree of 
crystallinity. 

I NTRO DU CTlON 

Mechanical, thermal, radiation, chemical and other treatments can lead to 
enormous variations in the structure of semicrystalline polymers. Changes in 
morphology resulting from various treatments involving heat, pressure, 
plastic deformation, etc. have been studied extensively and much is known 
about the nature of structural reorganization taking place in  polymers under 
various conditions. 

The effect of structural parameters on the mechanical responses, on the 
other hand, still remains poorly understood despite an ample background in 
morphology and awareness of the important effects that the morphology of 
polymers has on mechanical performance. The slow progress in this area of 
prime practical and theoretical importance can be attributed to several 
factors. First, in development of a theory of physical properties of semi- 
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252 D. PREVORSEK AND R .  H .  BUTLER 

crystalline polymers, one is faced with the fundamental difficulties encountered 
i n  treating heterogeneous systems. The morphology of semicrystalline 
polymers is often so complex that it defies an adequate description or repre- 
sentation by suitable models. Furthermore, the results of morphological 
studies often appear in a descriptive form which is difficult to express quanti- 
tatively in terms of parameters appearing i n  expressions describing the 
mechanical behavior of heterogeneous systems. 

Some polymeric systems have a structure which is heterogeneous on more 
than one level (e.g. spherulites, lamellae, extended chain crystals, cilia, etc.). 
For such systems, a quantitative theory of mechanical properties in terms of 
structural parameters would involve difficulties of a prohibitive magnitude. 
In many cases, however, the structure of semicrystalline polymers can be 
reasonably well represented by a two phase model consisting of crystalline 
domains dispersed in the amorphous phase or vice versa. These are the systems 
with which this study is concerned. The mechanical properties of such polymers 
can be interpreted in terms of the properties of the crystalline and amorphous 
domains provided we know the volume fraction of crystallites, their average 
dimensions, their orientation and dispersion characteristics and the nature of 
the phase boundary. The average dimensions, concentration and orientation 
of crystallites are estimated from x-ray diffraction data and electron micro- 
scopy studies. On the other hand, the characterization of the interphase and 
its strength, which in morphological studies frequently involves the study of 
crystallite surfaces with regard to chain folding and the concentration of the 
tie molecules between the crystallites and the amorphous phase, invariably 
involves difficult experimental procedures which often lead to ambiguous 
results. 

This study was prompted to a large degree by the desirability of finding a 
suitable technique to characterize the nature of the interface and the role of 
the crystallites in the mechanical properties of semicrystalline polymers. 

Realizing that the structure of the boundary between the crystallites and the 
amorphous phase (i.e. the degree of chain folding, or the concentration of tie 
molecules) should have a considerable effect on the transfer of stress and 
strain from one phase to another, we speculated that the study of mechanical 
coupling between phases in combination with a sophisticated morphological 
analysis could provide valuable information regarding the structure of the 
crystal-amorphous boundary. 

The proposed method involves: a) the characterization of structure in 
terms of the two phase amorphous-crystalline model (site, concentration, and 
orientation of the crystallites, etc.) b) the analysis of mechanical coupling 
between phases in terms of Takayanagil models, and c) the interpretation 
of mechanical properties assuming a two phasecompound system. In principle, 
such a study should provide information regarding the “efficiency” of 
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STRUCTURE OF NYLON-6 253 

crystallite reinforcement in amorphous matrix structures, the contribution of 
the amorphous phase to the impact resistance in structure having a crystalline 
matrix and other responses which are affected by the structures of the interface. 

In applying the proposed method, we found that the analysis of mechanical 
coupling in terms of Takayanagi models is much more complicated than 
reported in the literature. In particular, we found that in order to apply 
the method quantitatively, one requires basic polymer characterization data 
of extreme, and presently unobtainable, accuracy. Thus, in this paper we are 
primarily concerned with the theory and development of methods for deter- 
mining the correct coupling models given the present state of polymer 
characterization methods. 

The experimental data are included mostly for purposes of illustration of 
these methods. An extensive study of the structure of various polymers by the 
method outlined above, will be presented in subsequent publications. 

THEORY 

Dynamic mechanical properties (El ,  E", tan 6, etc.) measured in isochronal 
experiments depend on morphological characteristics (degree of crystallinity, 
orientation, crystallite size, etc.). In particular, the intensities of transitions 
observed in experiments conducted as a function of temperature are also 
effected by morphology. Takayanagi has shown that in cases where the 
properties of the crystalline and amorphous domains are known, the visco- 
elastic characteristics of semi-crystalline polymers can be reproduced by 
means of unit cube models shown in Figure 1 .  There, C is the crystalline and 
A the amorphous domain with the respective complex moduli E*,  and E*a. 
With the models A, B, and C the degree of crystallinity equals (1 -A+)  where 
+ and h are the indicated dimensions of the amorphous domains. With the 
models D, E, and F, on the other hand, the degree of crystallinity equals 

The physical significance of these models can best be illustrated when these 
systems are considered under applied stress indicated by the arrows. In the 
model A which is often referred to as a parallel model, both phases are under 
equal strain. Consequently, in cases where IE*e($lE*al the strain in the 
crystalline phase is negligible. Models B, C, E, and F represent a combination 
of the parallel-series and series-parallel arrangement. From the morphological 
point of view, it is important to distinguish between models B and C, which 
represent systems having a crystalline matrix with the amorphous phase 
dispersed therein, and models E and F where the situation is reversed. In 
order to achieve the objectives outlined in the introduction, it is necessary to 
determine, as accurately as possible, which of these models best describes the 
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FIGURE 1 Takayanagi mechanical coupling models. 

measured mechanical responses. Since the parallel and series models A and 
D are special cases of the other more general models, the problem will be to 
select among models B, C, E, and F and determine with least error 4 and A (or 
4' and A'). The values of crystallinity expressed as (1 -+A), (4' A') or X ,  will be 
those determined by standard x-ray diffraction techniques. In order to 
illustrate the method of selection, it is desirable to examine the functional 
relationship between the dynamic-mechanical properties of the system : 
Ea', E,", and tan 6, (of which only 2 are independent since tan 8, equals 
E, "/Ea') and the degree of crystallinity for various modes of load transfer. 

Effects of Degree of Crystallinity on E,', E,", and tan 6, 

The expressions for the real part of the complex modulus (Ea) for the various 
models are shown below: 

parallel (Model A): 
(1 - X I  - x+- Ea' 
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parallel-series crystal matrix (Model B): 

series-parallel crystal matrix (Model C )  : 

E,' 
K 

K - 1  - - d(l - X ) o  
- _ -  

Ec - K - d ( 1  - X ) o  + ( 1  - XI 
K-1  

series (Model D): 
1 _ -  - E S '  

Ec (1  - X ) K +  X 

parallel-series amorphous matrix (Model E) : 

series-parallel amorphous matrix (Model F) : 

1 

255 

(2) 

From the above expressions it is apparent that E,' for models B, C,  E, and 
F depends on both the degree of crystallinity X and the ratio of X to 4 (or 
A' to +') which we have defined as (or u'). In order to illustrate the essential 
features of the variation of Es with crystallinity which these expressions 
exhibit, we present the corresponding plots in Figure 2 for u = 1. The effect of 
variations in 0 at constant crystallinity will be discussed below. In the plots, 
values of E,' are normalized by the crystalline modulus E,' for convenience. 
Thus we plot Es'/Ec' versus crystallinity X .  

Referring to Figure 2 we see that for the series model (model D) Es' is not very 
sensitive to changes in the degree of crystallinity below 90% where E,' 
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256 D. PREVORSEK AND R. H. BUTLER 

I - C R Y S T A L L I N I T Y  

FIGURE 2 Variations in systems modules with crystallinity for various models, 

remains very close to Ea'. Almost the entire change in modulus (&') occurs in 
the range of crystallinity between 90 to 100% where dEs'/dX is positive and 
very large. 

In  the parallel model (model A) on the other hand, the relationship between 
the degree of crystallinity and E,' is linear. 

The responses of the mixed models (PS),, (SP),, (PS),, and (SP), to changes 
in the degree of crystallinity lie between those observed with the series and 
parallel models. 

From the plots of Figure 2, it can be seen that at each level ofcrystallinity, the 
maximum in modulus Es' is obtained with the parallel model and the mini- 
mum with the series model. Considering the schematic representation of the 
six models shown in Figure I ,  it is apparent that by adjusting the relative 
dimensions of the blocks (i.e. by varyingo, theratioof A to 4)  each of the four- 
mixed models may vary between the simpler series and parallel models. Thus, 
given a value of the system modulus E,' and the crystallinity X ,  it is possible 
to fit all four models to the data by varying U. In other words, one value of the 
system modulus is not sufficient to distinguish between the four models. 

The expressions for tan 6, for the various models as a function of the degree 
of crystallinity and the geometric parameter u are given below. (Since these 
equations are quite complicated, the dependence on crystallinity and 0 is 
included implicitly through A and 4 (A' and 4') to simplify the expressions. 
Tan 6 for the crystalline phase is assumed to be zero.) 
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STRUCTURE OF NYLON-6 

Model A - parallel 

Model B - (PS), 

tan 6 i+> t) - -  - 
tan 6, 

1 + (y) ( I  - 4 + 4 K )  

Model C - (SP), 

Model D - series 

tan 6 1 
- 

t a  - 

Model E - (PS), 

tan 6 - 1 -A’ 
1 - 

Model F - (SP)A 

4’ , f ( l - A ’ ,  K )  
tan 6 + 1-A’tA’K , , ,  - =  

tan S A  1 + (”) 1 
1-4‘ 1 -A‘+A’K 
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(7) 

Plots of the variation of tan 6, with the degree of crystallinity corresponding 
to these equations are given in Figure 3. As in  the plots of Es‘, we assume avalue 
of u = 1 to  allow the demonstration of the general features of thedependence 
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258 D. PREVORSEK AND R. H. BUTLER 

of tan 6, on crystallinity. The effect of variations in u will be discussed below. 
In the plots, tan 6, is normalized by tan S-4 (tan 6 of the amorphous) so that we 
plot tan G,/tan 6 A  versus crystallinity. 

From the plots of tan 6,/tan 8~ shown in Figure 3 it can be seen that for the 
parallel and crystal matrix models, tan 6, is very sensitive to changes in 

0 0 .5  

I - C R Y S T A L L I N I T Y  

FIGURE 3 Variations in system tan 6 with crystallinity for various models. 

crystallinity in the range of low crystallinity ( X  = 0 to 0.4). When the degree 
of crystallinity of the system reaches 50%, tan 6, is already very small and 
changes rather insignificantly with further increases in crystallinity. 

With the series and amorphous matrix models on the other hand, tan 6, is 
very high and relatively insensitive to changes in crystallinity in the range of 
0 to 0.6. For values of X > 0.6, the ratio of tan &,/tan 8~ decreases rapidly 
reaching the maximum sensitivity (d  (tan &/tan S~)/d(l - X )  max) at zero 
degree of crystallinity. As in the case of the system modulus (E,'), each of the 
mixed models may befitted to a simple value of tan 6, at a particular crystallinity 
by varying the dimensions of the blocks (i.e. by varying 0). Thus, the 
determination of one of the independent properties E,' or tan 6, is not sufficient 
to distinguish between the four models, despite the fact that on the average, 
the properties of models having a crystalline matrix differ considerably from 
those having an amorphous matrix. This point is illustrated in Figure 4 for 
systems having 50 % crystallinity where we show plots of tan 6, as a function 
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m 
a 
2 

PARALLEL - COUPLING FACTOR u SERIES 

FIGURE 4 Variations in tan 6 with (I for crystalline and amorphous matrix models; 
X = 50. 

of u for the crystalline and the amorphous matrix models. From the plots we 
observe that the amorphous matrix models ((PS), and (SP)A) for which 
u 20.6 (which represents N93 % of all possible models) have tan &&an 6, 
> 1.0 while the majority of the crystalline matrix models (those for which 
u 5 1.7 which represents 13 % of all possible models) have tan &/tan 8~ < 1. 
Thus, one can use the magnitude of tan 6, as a guideline for determining 
which phase (amorphous or crystalline) forms the matrix. 

In principle, a definite differentiation between the models having a crystal- 
line matrix (PS), and (SP), from those having an amorphous matrix (PS), and 
(SP)A can be made by measuring the two independent properties E,' and 
tan 6, (e.g. on a vibron dynamic viscoelastometer), provided one knows the 
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corresponding properties of the amorphous and crystalline phases. However, 
since in many cases it is difficult to obtain these properties (i.e. the crystalline 
and amorphous complex moduli) a reliable determination of the correct type 
of model is often precluded. 

Effect of Temperature on €,' and Tan 6, 

A very efficient method for distinguishing between amorphous and crystalline 
matrix models involves the measurement of changes in E,' and tan 6 ,  in a 
temperature interval involving a transition. This analysis can often be carried 
out most accurately by examining the behavior of the polymer in a tempera- 
ture interval involving the glass transition. Frequently, in this temperature 
range, the effects are very large which is important for achieving good resolu- 
tion. Furthermore, since the crystalline relaxation usually occurs considerably 
above the glass transition temperature, it is often possible to study the effects 
of a single relaxation of one phase on the whole system thus simplifying the 
analysis. 

The principle of the method applied to a single relaxation model conform- 
ing to the Arrhenius temperature dependence is outlined below. For a single 
relaxation model the following expressions are valid : 

(Eu - Er>w27: E' = ER + 
1 + w27; 

(15) 
(Eu - Er)w7, 
Er + Euw27: 

Tan 6 = 

There, Er and Eu are the relaxed and unrelaxed modulus, w is the frequency 
and 7y is the relaxation time. 

In order to examine the temperature dependence of the above expressions, 
we apply the Arrhenius relationship 

H 
7 = r0 exp - 

RT 

Here H is the activation energy of the dispersion, T~ is a constant on the order 
of magnitude of 10J2 sec, T is the absolute temperature and R is the gas 
constant. By inserting the relationship (16) into Eqs. (13), (14), and (15) 
we obtain expressions through which the temperature dependence of the 
dynamic-mechanical properties for such a system may be determined. To 
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STRUCTURE OF NYLON-6 26 1 

illustrate the typical temperature dependence for an amorphous polymer we 
may apply these expressions by assuming that the polymer exhibits a maxi- 
mum in tan 6 at 120°C and possesses relaxed and unrelaxed moduli of lo8 
and 1O'O dynes/cm2 respectively. (These values are of the right order of 
magnitude for a major amorphous transition in a semi-crystalline polymer.) 
Results of these calculations are presented in Figure 5 where we plot E ', E", and 

n 
a 
W 

T O C  

FIGURE 5 r, E", and tan 6 versus temperature for single relaxation Arrhenius model 
(one phase system). 

tan 6 versus temperature. From the plots we see that the calculated behavior 
is quite close to that exhibited by real amorphous polymers, namely, a large 
tan 6 maximum (on the order of 5)  and a modulus drop which occurs over a 
temperature interval of approximately 20 degrees. 

By treating this model material as the amorphous phase in a two phase 
semi-crystalline system, we may examine the effects of load transfer between 
the phases on the temperature variation of tan 6 ,  and E,'. This may be done 
by inserting the calculated temperature dependence of the amorphous proper- 
ties (tan 6~ and EA') into the equations ( 1  through 12) for the load transfer 
models presented above. To do this, we assume a crystallinity ( X )  of SO%, a 
crystal modulus (Ec)  of 100 x 1010 dynes/cm*, and a low temperature 
( T z  -lOO°C) system modulus of 5 x IOl"dynes/cmz. We then fit each of the 
models to give the assumed system modulus at - 100°C by determining the 
load transfer factor u for each. With the models thus completely defined, we 
insert the temperature dependent amorphous properties (EA' and tan S A )  and 
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262 D. PREVORSEK AND R. H. BUTLER 

calculate the resulting system temperature dependence. From these calcula- 
tions we obtain the results shown in Figure 6,  where we plot tan 6, and E,' versus 
temperature for the various models. 

Considering the plot of system modulus (&') versus temperature shown in 
Figure 6 ,  it is apparent that the crystal matrix models ((PS), and (SP),) exhibit 
a much lower drop in modulus on passing through the amorphous transition 
than the amorphous matrix models ((PS), and (SP),). The large difference 
in the response of these classes of load transfer models is also illustrated in the 
tan 8, versus temperature plot. Here, the crystal matrix models show a much 
lower tan 6, than the amorphous matrix models. Thus, we see that in general 
the examination of property changes in the glass transition region provides an 
easy distinction between the amorphous and crystalline matrix models. 

The distinction between series-parallel and parallel-series arrangements is, 
however, much less apparent. The difference between the responses of these 
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models (e.g. between (PS), and (SP),) in both tan 6, and E,‘ is negligible, and 
thus temperature experiments would prove to be of little use in determining 
the correct model for a particular system. It must be pointed out however, 
that the necessity of such a differentiation is questionable since the physical 
significance of making such a distinction is not understood at this time. Thus, 
in cases where both the parallel-series and the series-parallel arrangements 
appear to fit the experimental data, one should proceed by considering 
solutions for both models. 

Coupling Models from Diffusion Studies 

The success in determining the appropriate coupling models by means of the 
previously described methods depends strongly on the accuracy of the esti- 
mates of EA, u, EA, R, E, and the relaxation times associated with the transi- 
tion. For many polymers this information is not readily available. In the 
absence of such information it is possible to establish the nature of coupling 
from a series of diffusion experiments carried out above the glass transition 
temperature. This approach is based on the following considerations. 

It has been shown that Eq. (17) holds for diffusion in amorphous 
polymers in the rubbery state 

D 
RT 

In - = - Blnr + C 

Where DT is the diffusion coefficient, R is the gas constant, B and C are 
constants depending on the chemical structure of the polymer and penetrant, 
and T is the absolute temperature. 

It has also been shown that 
A Hv B = -  
AHE 

where AHv and A H s  are respectively activation energies of viscous flow and 
diffusion. In cases where the size of the diffusing molecule is comparable to 
the size of the polymer segment that moves, H ,  = H s  and B = 1. This has 
indeed been observed. 

Consider now a diffusion process in a semi-crystalline polymer above the 
glass transition temperature, where the crystalline phase is essentially im- 
permeable for the diffusing molecules. For the “microdiffusion” within an 
amorphous domain, (17) is still applicable and can be written: 

Da 
RT 

In- = - 

where subscript “a” denotes that the particular quantities refer to the amor- 
phous phase only. In order to obtain an analogus expression valid for the 
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diffusion processes in the more complicated two phase system of serni- 
crystalline polymers, one may apply the empirical Eq. (20): 

D = +amDa (20) 

where +a is the degree of amorphicity and “m” is a factor depending on the 
tortuosity of the permeable channels. It should be noted that if the geometrical 
features of the permeable and impermeable phase are known, “m” can be 
computed with reasonable accuracy. Results of such calculations in the 
literature correlate well with experimental determinations of “m” and show 
that “m” falls in the range between 0.3 and unity. 

Rewriting (20) in logarithmic form and accounting for the temperature 
effects : 

D D In- = min+, + In L.! 
RT RT 

and combining (21) with (19) we obtain 

(21) 

Considering that qa cannot be measured, it is desirable to define a relation- 
ship between the sample viscosity (7) which can be measured, and the 
amorphous viscosity (qa). For this purpose we make use of 

= +anqa (23) 

where “n” is a constant related to the load transfer between the phases. It  
follows from (22) and (23) that 

(24) 
D 

RT 
In - = - Ba (-nln+a + lnq) + Ca + mln+a 

which leads to: 

(25) 
D 

RT 
In - = -Balnq + Ca + BaIn+an + In+a” 

and : 

(26) 

An inspection of (26) indicates the complex relationship between the structure 
of the amorphous phase (Ba, Ca),  degree of amorphicity ( d a ) ,  size and arrange- 
ment of crystallites (m),  load distribution between phases (n) and viscosity of 
the sample (7). 

D 
RT 

In - = - -ah7  + Ca + In 
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In applying Eq. (26) for the interpretation of the diffusion results in  terms 
of polymer structure (degree of crystallinity, size of crystallites, orientation of 
the amorphous phase, etc.) or for the determination of the load transfer 
coefficient "n" it should be noted that: 

1) Sample viscosity can be estimated from dynamic experiments by means 

2) Ca, Ba, +a, m and n are constants independent of temperature. 
3) With samples of the same amorphous orientation, Ba is independent 

of E"/w where w = the frequency of the experiment. 

of da. 

RESULTS AND DISCUSSION 

Coupling Models for Undrawn Nylon-6 

A series of unoriented Nylon-6 samples of various degree of x-ray crystal- 
linities was examined with respect to E', E", and tan 6 in  the temperature range 
between - 80" to + 150°C. The measurements were carried out at a frequency 
of 110 cycles/sec by means of the Vibron type viscoelastometer. The pertinent 
x-ray data and the values of (tan 6) max of the u relaxation are given in 
Table I. 

Since it is difficult to prepare specimens of Nylon-6 of very low crystallinity 
and since such specimens cannot be examined over a wide temperature range 
without changing the crystallinity, we include in the analysis which follows a 
series of cross-linked Nylon-6 samples. These polymers were prepared with 
small amounts of hexamethylene diamine and trimesic acids using the follow- 
ing procedure : 
Forty grams of mixtures of freshly distilled dry (50 p.p.m. water) 6-capro- 
lactam (CL) and various amounts of both hexamethylene diamine (H MDA) 
and trimesic acid (TMA) were heated to 160°C under a stream of dry helium. 
Subsequently, the tubes were sealed off (under helium) and allowed to 

TABLE I 
Degree of Crystallinity and (Tan 6) niax for unoriented 

Nylon-6 Polymers 

Specimen Degree of (Tan 6) max 
Crystallinity (%) 

1 35 0.15 
2 42 0.14 
3 45 0.12 
4 50 0.10 
5 55  0.08 
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266 D. PREVORSEK AND R. H. BUTLER 

polymerize at 260°C for 48i hours. The products were then milled, water 
extracted, vacuum dried, and compression molded into films of 5 mils 
thickness for x-ray analysis and determination of viscoelastic properties. The 
pertinent data relating to these films are presented in Table 11. 

TABLE I1 
Characteristics of Experimental Cross-linked Poly-caprolactams 

Initial Composition X-ray Analysis 

CL/TMA/HMDA % amorphous % u % p U’ relaxation 
Sample % by weight (tan 6) max 

I 97.5/1.0/1.5 47 17 36 0.18 
2 92.5/3.0/4.5 47 16 37 0.22 
3 90.0/4.0/6.0 68 8 24 0.38 
4 87.515.017.5 N loo 0 0  0.78 
5 85.0/6.0/9.0 N loo 0 0  0.92 
6 loo/ 01 0 45 50 5 0.13 

The variation of tan 6 max (a’ transition) with the degree of crystallinity for 
the Nylon-6 films and the cross-linked polycaprolactams are plotted in Figure 7. 
From these plots we observe that the general form of the variation of tan 6 
max with crystallinity closely resembles that of systems in which the crystal- 
line phase forms the load-transfer matrix (see Figure 3). Thus, we assume that 
for undrawn Nylon-6 the crystal matrix models apply. We also observe from 
Figure 7 that the value of tan 6 max approaches a value of about one as the 
crystallinity approaches O X ,  and thus, we assume that tan 6 max for the 
amorphous phase is close to unity. With these observations, we proceed to 
determine the value of the load transfer parameter u for the parallel-series 
crystal matrix model which applies to undrawn Nylon-6 at 50 % crystallinity. 
That is, we fit the coupling model to the experimental data obtained. 

For this purpose, we write the general equation relating the complex 
modulus of the system (E8*) to the properties of the separate phases for the 
parallel-series crystalline matrix model in which the crystalline phase shows 
no relaxation : 

in this relation, 

E~ E modulus of the crystalline phase 
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,-. 
I 

NYLON 6 8 TERPOLYMERS 

a . 2 -  - 
b- 

20 40 60 80 
% AMORPHOUS 

a . 2 -  - 
b- 

.I - 

I I I 
20 40 60 80 

% AMORPHOUS 

% A M O R P H O U S  

FIGURE 7 Intensity of a’ peak in tan 6 versus amorphous content for various Nylon-6 
polymers. 

h = vertical dimension of the amorphous block 

4 = horizontal dimension of the amorphous block 

We now apply this equation to temperatures below and above the amorphous 
relaxation. Here /? = 0 and a @ 1 .  Thus, the equation reduces to 

F 
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268 D. PREVORSEK AND R.  H. BUTLER 

Rewriting this by considering the definitions of the various parameters, we get 

EA’ + (1 - A) Es’ 
EC Ec 
- z 0- 

or 

2’ z ! (“ - (1  - A )  
Ec u Ec 

By applying this relationship below and above the amorphous relaxation, we 
obtain 

and 

where the subscripts “L” and “H” imply low and high temperature respectively. 
Taking the ratio of these equations we obtain 

Now, since we measure E, L and E, 
S A  max (which we know) via 

and since E A  H / E A  L is related to tan 

(This equation is obtained from Eq. 19 by observing that tan 6 is 
maximum at WTY = (EA’”EA’L)’’~). We have thus determined a relationship 
between A and the crystal modulus Ec such that the experimental data 
( E , ‘ ~ / & ’ ~ )  is satisfied. To cast the relationship in more concrete terms, we 
apply the experimentally determined values: 

E ~ ‘ ~  = 2.0 x 1010 dyneslcm2 (0°C) 

EslH = 0.65 x 1010 dynes/cm2 (150°C) 

tan S A  max = 1 => - EA’H z 0.17 
EA’ L 

to obtain 

0.37 x 1010 
EC 

h = l -  
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STRUCTURE OF NYLON-6 269 

Now, since A = v' u ( 1  - X )  and X = 0.5 (50% crystallinity) 

Thus, given a value of the crystalline modulus, we can determine the coupling 
parameter. However, reliable values of crystalline moduli are not available 
since their measurement requires an a priori assumption regarding the load 
transfer between the phases. Hence, we must obtain additional information if 
the problem is to be solved. 

For this purpose, we recall Eq. 27 

Applying the approximation used above, we obtain an expression for the 
system loss (imaginary) modulus (E,") 

or 
Es ' 
- w  

,I + EA 

If we now apply this equation at the temperature at which tan 6 is maximum, 
we obtain 

Inserting the value of EA'HIEA'L = 0.17 
this reduces to 

EA" = 0.29 (EA'L) 

On inserting this relation and the value of E," into Eq. (32) we obtain 

U = 0.41 x 1O1O/f?A'L 

Thus, we have obtained a relationship between the coupling parameter u and 
the low temperature (i.e. unrelaxed) amorphous modulus which must be 
satisfied to be consistent with the experimental data. Recalling the relation- 
ship determined above on the basis of system modulus data 
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270 D. PREVORSEK AND R. H. BUTLER 

0.37 EC 1°’0)2 
u = 2 (1- 

we see that we now have two equations in the three unknowns U, EA‘L, and 
E,. This relationship is presented in Figure 8 where we plot E, and EA‘L versus U. 

Thus, for example, given the value of E, we can determine the coupling 
parameter (T and the low temperature amorphous modulus (EA’L). 

To obtain an estimate of Ee we observe that the effective value of E, for an 
unoriented system is approximately given by the average of the modulus i n  
the direction of the polymer chains in the crystal (El l)  and that perpendicular 
to it (EL). 

For an estimate of the value of Ell we consider Treloar’s3 calculated 
crystal modulus of Ell % 200 x 1010 dynes/cm2. Since the Treloar calculations 
assume a fully extended chain in the crystal, this value obviously represents 
the upper bound on Ell. The experimental values of Sakurada4 ( E , ,  z 
20 x 1010 dynes/cm*) for Nylon-6 on the other hand, are based on the 
assumption of a series model in an oriented system which, as we shall see 
below, is incorrect and for reasons stated in the introduction we must regard 
this value as a lower bound on Ell. Using the results of our load transfer 

COUPLING FACTOR a 

FIGURE 8 Unoriented Nylon-6: Plots of crystalline and amorphous modulus versus 
coupling factor U ;  values satisfying the experimental data. 
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STRUCTURE OF NYLON-6 27 1 

studies on oriented Nylon-6 we estimate the error of Sakurada to be on the 
order of 20%. Thus, we imply that Ell z 25 x 1010 dynes/cmz. 

The value of the average transverse modulus (EL) is assumed, on the basis 
of experimental data, to be on the order of 4 x 1010 dynes/cmz. Thus, the 
effective crystal modulus in unoriented systems (E,) is approximately 15 x 
1010 dynes/cm*. Using this value and the data of Figure 8, we arrive at the 
following values for the coupling parameter u and low temperature (unre- 
laxed) amorphous modulus of 

u z  1.88 

EA'L z 0.22 x 1010 dyneslcm2 

Thus, for undrawn Nylon-6 film of 50% crystallinity we conclude that the 
following coupling model is valid : 

h 

this indicates a very inefficient structure with respect to the potential rein- 
forcement of the system by the crystalline phase. 

Coupling Model of Oriented Nylon-6 Fibers from Diffusion 
Studies 

The diffusion Eq. (26) was applied to a series of experimental Nylon-6 
fibers. These were examined with respect to the degree of amorphous fraction, 
coefficient of diffusion, sample viscosity, size of crystallites and degree of 
orientation of the amorphous phase. This latter information was estimated by 
means of the expression derived by Stein5 

(31) A = XfCAc" + ( I  - X ) f 2 1 a o  

Here A is the measured birefringence, Xis  the degree of crystallinity,f, andf, 
are the crystalline and amorphous orientation functions, and Aco and Aao are 
the birefringences of a segment in the crystalline and amorphous phases. For 
Nylon-6 

A," = doo = 0.073 
- 

Values offc, defined as f, = 1/3 (3 cos2 4 - 1) were estimated by the method 
of Dumbleton using the azimuthal width of the 200 reflections. The pertinent 
data of these studies are summarized in Tables 111 and IV. 
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272 D. PREVORSEK AND R. H. BUTLER 

TABLE I11 
Amorphous and Crystalline Orientation Functions of Experimental 

Nylon-6 Yarns 

111 IV V 

Half Angle 9" 10" 13" 

Birefringence, d .0469 .05 15 .0528 

Crystalline orientation function, .933 .925 .888 

Amorphous orientation . a 9  .495 .503 

(200) & (202 + 002) 

Degree of Crystallinity, X .42 .49 .57 

fc 
function, yarn 

TABLE IV 
Sample viscosity, coefficient of diffusion and degree of amorphicity 

of experimental Nylon-6 fibers 

Sample 
Symbol 

I 
I1 
111 
1v 
V 

where C1 
Ca, 

D 
E" 

+a 

w 

.I44 .90 x 10Bpoise .32 

.I40 .99 .58 

.085 .94 .51 

.073 1.07 .46 

. lo7 .92 .43 

= dye uptake in 10 minutes 
= dye uptake at equilibrium 

= diffusion constant, proportional to 
= loss modulus measured at 35"C, 95 % R.H., 110 cps 
= 27 (frequency) = 2w (110) 
= amorphous volume fraction 

<a2 

Here it can be seen that in samples I ,  111, and V we have a series of fibers 
of nearly equal viscosity (0.90, 0.94, and 0.92 x lo6 poise respectively) and 
different amorphicity, (0.32, 0.5 1, and 0.43 respectively). Considering further 
that at least samples I and 111 have nearly equal total and amorphous orienta- 
tion and consequently nearly equal Ba, we can plot for these samples In Dvs. 
I+ to obtain the value of the exponent (m + nBu). The corresponding plot 
shown in Figure 9 indicates a slope of - 1.12, Consequently, we assume that 
for this series 

m + nBa = -1.12. (35) 
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2 4  

2 .2  

2.0 
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t 
1.d I 1 1 I I 

.6 .7 .e .9 1.0 1 . 1  
I n  +.a 

FIGURE 9 Logarithmic plot of diffusion coefficient versus degree of amorphicity; sample 
viscosity (E"/w) and amorphous orientation (i.e. Ba) are constant. 

Again referring to the data in Table IV we see that samples IV and V have 
nearly the same amorphous content (.46 and .43 respectively). Assuming that 
Ca does not vary greatly between these samples we extract a value for Ba by 
calculating dlnD/dInq. The result is Ba = 2.4. 

Based on the x-ray data concerning the size of the crystallites we inferred 
that within this series "m" should be considered constant at least as far as the 
dimensions of the crystallites perpendicular to the fiber axis are concerned. 
The maximum difference in crystallite size within the series is about 13% 
which is far too small to affect significantly the length of the path of the 
diffusing molecules from sample to sample. From geometrical considerations 
we then concluded that the path of penetrating molecules is approximately 1.5 
times as long as it would be without the crystallites. This assumption leads to a 
value of m = 0.5. 

Following these considerations, we insert the values for Ba and m into 
Eq. (35) yielding 

0.5 + n(2.4) = -1.12 

or 

n = -0.68 

Returning to the basic Eq. (26) and inserting the values of parameters 
(&, n, rn) we obtain 
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. I5  

- 
I- 2 

w .I0 1 
P 
W a x W - - ;lo I 
I 

.05 

.02 

.01 

0 

Eq. (36) is then used to plot calculated and measured coefficients of 
diffusion shown in Figure 10. Assuming a value of Ca of 1.38 x lOI3 we were 
able to obtain a nearly perfect fit of the results from fibers having nearly equal 
amorphous orientation. This behavior was expected because of the known 
sensitivity of Ba to amorphous orientation. Thus establishing the validity of 
(26) we proceed with the analysis of the coupling model from the extracted 
value of "n". 

- 

- 

- 

- 
- 

' I  I I I 
0 .01 .02 .05 .I0 . I 5  

FIGURE 10 Calculated and measured coefficient of diffusion for experimental Nylon-6 
fibers. 

From the magnitude of the tan 6 peak of the a' transition for these fibers 
(tan 8 % 0.1 1) and the plots of Figure 3, one can infer that these fibers conform 
to a crystalline matrix model (either (SP), or (PS),). From considerations of 
the anisotropy of modulus and tan 8 observed in drawn Nylon-6 systems, we 
can also infer that the (PS), model is the more probable. For this model we 
have 
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STRUCTURE OF NYLON-6 215 

Es ' 4 a  
(37) EA" 

where 4 is the vertical dimension of the amorphous block, +a is the degree of 
amorphicity, and K = E,' JEA'. 
In cases where K 9  1, this equation reduces to 

- -  
2 

( $b (1 - ;) + 

Such conditions obtain (i.e. E,' /EA' $ 1 )  for temperatures above the a' 
relaxation, where we have also shown that 

E," M EA" +a -Oh' for 0.3 <Ca <0.6 (39) 
Thus, combining the equations (38) and (39) we obtain an expression for the 
load transfer parameter u as a function of the amorphous fraction $a :  

Es " - M ea -0.68 M a which is valid for 0.3 <+a <0.6 
EA 

Thus, for this series of fibers we conclude that 

1 
5 % -  cao.68 for 0.3 < ea < 0.6 

To illustrate this variation of the load transfer parameter u with varying 
degrees of amorphicity we present schematic representations of the model 
below. 

= 0.35 +a = 0.45 
a = 2  a = 1.7 

SUMMARY AND CONCLUSION 

+a = 0.55 
a = 1.5 

A new method is outlined to study the structure property relationship in 
semicrystalline polymers. The proposed method involves : a) the character- 
ization of structure in terms of the two phase amorphous-crystalline model 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
5
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



276 D. PREVORSEK AND R. H. BUTLER 

(size, concentration, and orientation of the crystallites, etc.) b) the analysis of 
mechanical coupling between phases in terms of Takayanagil models, and 
c) the interpretation of mechanical properties assuming a two phase composite 
system. It is expected that such a study will lead to a better understanding of 
the nature of the phase boundary and thus provide the information which is 
essential for the interpretation of the mechanical responses in terms of 
morphological characteristics (degree of crystallinity, sizes of crystallites, 
orientation, etc.). 

The principles are reviewed for quantitative determination of the load 
transfer characteristics between the amorphous and crystalline phase in terms 
of Takayanagi models. A theory is developed to account for the temperature 
dependence of various system models in a temperature interval involving a 
transition of the low modulus (amorphous) phase. The derived equations 
are applied to elucidate the load transfer characteristics of unoriented Nylon-6. 
It is shown that 1) the a‘ transition of this polymer involves a relaxation 
mechanism which can be described well by a single relaxation process con- 
forming to the Arrhenius temperature relation and 2) the unoriented structure 
is very inefficient with regard to crystal reinforcement. Since the success of the 
analysis of the temperature effects depends on the availability and accuracy of 
the unrelaxed and relaxed moduli (E“ and ER) of the amorphous phase as 
well as on the relaxation spectrum associated with the transition, the applica- 
bility of the method is rather limited. 

An alternate approach to determine the coupling models is developed based 
on the relationship between diffusion and viscoelastic characteristics of the 
polymer. This approach, which does not require an accurate estimate of the 
properties of a “completely” amorphous polymer, is applied to a series of 
oriented Nylon-6 fibers. The study, which confirms the validity of the derived 
equation to describe the diffusion process in semicrystalline polymers above 
the glass transition temperature, leads to a quantitative representation of the 
“efficiency” of crystal reinforcement as a function of the degree of crystallinity. 

In connection with the application of diffusion to study the nature of the 
mechanical coupling between phases it must be pointed out that: 

a) the diffusion of small molecules is one of the most powerful methods to 
investigate the polymer structure.7 

b) the diffusion process cannot be interpreted in terms of the results 
obtained by means of standard characterization techniques. 

tSpecifically. the diffusion studies led to the concepts of 
1 )  Various degrees of order (in contrast with a two phase system implied from x-ray 

2) Fluctuations in density of the amorphous phase. 
3) Existence of holes in the amorphous phase. 
4) Distribution of hole dimensions. 

diffract ion). 
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STRUCTURE OF NYLON-6 277 

c)  the diffusion studies provided the information regarding the structure of 
the amorphous phase and distribution of crystallites which complements the 
data provided by standard characterization techniques. 

Based on these considerations it is possible that the most important results 
of the study presented lies in the development of a theory which makes 
possible the investigation of effects of morphology of semicrystalline polymers 
on their mechanical properties by means of an analysis involving the results of 
diffusion, viscoelastic responses, and standard morphological characterization 
techniques. 
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