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A method is outlined to study the structure property relationship in semicrystalline fibers
involving (a) the characterization of structure in terms of the two phase amorphous-
crystalline model (size, concentration and orientation of the crystallites, etc.), (b) the
analysis of viscoelastic responses in terms of Takayanagi models, and (c) the analysis of
diffusion assuming that crystals are essentially impermeable to large dye molecules. The
method, which does not require an accurate estimate of the properties of a ‘“‘completely”
amorphous polymer, is applied to a series of oriented nylon 6 fibers. The study, which
confirms the validity of the derived equation to describe the diffusion process in semi-
crystalline polymers above the glass transition temperature, leads to a quantitative
representation of the “efficiency” of crystal reinforcement as a function of the degree of
crystallinity.

INTRODUCTION

Mechanical, thermal, radiation, chemical and other treatments can lead to
enormous variations in the structure of semicrystalline polymers. Changes in
morphology resulting from various treatments involving heat, pressure,
plastic deformation, etc. have been studied extensively and much is known
about the nature of structural reorganization taking place in polymers under
various conditions.

The effect of structural parameters on the mechanical responses, on the
other hand, still remains poorly understood despite an ample background in
morphology and awareness of the important effects that the morphology of
polymers has on mechanical performance. The slow progress in this area of
prime practical and theoretical importance can be attributed to several
factors. First, in development of a theory of physical properties of semi-
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crystalline polymers, one is faced with the fundamental difficulties encountered
in treating heterogeneous systems. The morphology of semicrystalline
polymers is often so complex that it defies an adequate description or repre-
sentation by suitable models. Furthermore, the results of morphological
studies often appear in a descriptive form which is difficult to express quanti-
tatively in terms of parameters appearing in expressions describing the
mechanical behavior of heterogeneous systems.

Some polymeric systems have a structure which is heterogeneous on more
than one level (e.g. spherulites, lamellae, extended chain crystals, cilia, etc.).
For such systems, a quantitative theory of mechanical properties in terms of
structural parameters would involve difficulties of a prohibitive magnitude.
In many cases, however, the structure of semicrystalline polymers can be
reasonably well represented by a two phase model consisting of crystalline
domains dispersed in the amorphous phase or vice versa. These are the systems
with which this study is concerned. The mechanical properties of such polymers
can be interpreted in terms of the properties of the crystalline and amorphous
domains provided we know the volume fraction of crystallites, their average
dimensions, their orientation and dispersion characteristics and the nature of
the phase boundary. The average dimensions, concentration and orientation
of crystallites are estimated from x-ray diffraction data and electron micro-
scopy studies. On the other hand, the characterization of the interphase and
its strength, which in morphological studies frequently involves the study of
crystallite surfaces with regard to chain folding and the concentration of the
tie molecules between the crystallites and the amorphous phase, invariably
involves difficult experimental procedures which often lead to ambiguous
results.

This study was prompted to a large degree by the desirability of finding a
suitable technique to characterize the nature of the interface and the role of
the crystallites in the mechanical properties of semicrystalline polymers.

Realizing that the structure of the boundary between the crystallites and the
amorphous phase (i.e. the degree of chain folding, or the concentration of tie
molecules) should have a considerable effect on the transfer of stress and
strain from one phase to another, we speculated that the study of mechanical
coupling between phases in combination with a sophisticated morphological
analysis could provide valuable information regarding the structure of the
crystal-amorphous boundary.

The proposed method involves: a) the characterization of structure in
terms of the two phase amorphous-crystalline model (site, concentration, and
orientation of the crystallites, etc.) b) the analysis of mechanical coupling
between phases in terms of Takayanagi! models, and c) the interpretation
of mechanical properties assuming a two phase compound system. In principle,
such a study should provide information regarding the “efficiency” of
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crystallite reinforcement in amorphous matrix structures, the contribution of
the amorphous phase to the impact resistance in structure having a crystalline
matrix and other responses which are affected by the structures of the interface.

In applying the proposed method, we found that the analysis of mechanical
coupling in terms of Takayanagi models is much more complicated than
reported in the literature. In particular, we found that in order to apply
the method quantitatively, one requires basic polymer characterization data
of extreme, and presently unobtainable, accuracy. Thus, in this paper we are
primarily concerned with the theory and development of methods for deter-
mining the correct coupling models given the present state of polymer
characterization methods.

The experimental data are included mostly for purposes of illustration of
these methods. An extensive study of the structure of various polymers by the
method outlined above, will be presented in subsequent publications.

THEORY

Dynamic mechanical properties (E’, E”, tan 8, etc.) measured in isochronal
experiments depend on morphological characteristics (degree of crystallinity,
orientation, crystallite size, etc.). In particular, the intensities of transitions
observed in experiments conducted as a function of temperature are also
effected by morphology. Takayanagi has shown that in cases where the
properties of the crystalline and amorphous domains are known, the visco-
elastic characteristics of semi-crystalline polymers can be reproduced by
means of unit cube models shown in Figure 1. There, C is the crystalline and
A the amorphous domain with the respective complex moduli E*. and E*,.
With the models A, B, and C the degree of crystallinity equals (1 —A$) where
é and X are the indicated dimensions of the amorphous domains. With the
models D, E, and F, on the other hand, the degree of crystallinity equals
d'N.

The physical significance of these models can best be illustrated when these
systems are considered under applied stress indicated by the arrows. In the
model A which is often referred to as a parallel model, both phases are under
equal strain. Consequently, in cases where |E*;|>|E*4| the strain in the
crystalline phase is negligible. Models B, C, E, and F represent a combination
of the parallel-series and series-parallel arrangement. From the morphological
point of view, it is important to distinguish between models B and C, which
represent systems having a crystalline matrix with the amorphous phase
dispersed therein, and models E and F where the situation is reversed. In
order to achieve the objectives outlined in the introduction, it is necessary to
determine, as accurately as possible, which of these models best describes the
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measured mechanical responses. Since the parallel and series models A and
D are special cases of the other more general models, the problem will be to
select among models B, C, E, and F and determine with least error ¢ and A (or
¢" and X’). The values of crystallinity expressed as (1 — #A), (¢' A") or X, will be
those determined by standard x-ray diffraction techniques. In order to
illustrate the method of selection, it is desirable to examine the functional
relationship between the dynamic-mechanical properties of the system:
E¢, Es", and tan 8; (of which only 2 are independent since tan 8, equals
Es"/Es') and the degree of crystallinity for various modes of load transfer.

Effects of Degree of Crystallinity on E;’, E;'’', and tan

The expressions for the real part of the complex modulus (E;) for the various
models are shown below:

parallel (Model A):
— =X+ — (1)
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parallel-series crystal matrix (Model B):
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@
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(6)

From the above expressions it is apparent that E’ for models B, C, E, and
F depends on both the degree of crystallinity X and the ratio of A to ¢ (or
A’ to ¢') which we have defined as ¢ (or ¢’). In order to illustrate the essential
features of the variation of E; with crystallinity which these expressions
exhibit, we present the corresponding plots in Figure 2 for ¢ = 1. The effect of
variations in ¢ at constant crystallinity will be discussed below. In the plots,
values of E,’ are normalized by the crystalline modulus E,’ for convenience.

Thus we plot E;'/E,’ versus crystallinity X.

Referring to Figure 2 we see that for the series model (model D) E;' is not very
sensitive to changes in the degree of crystallinity below 909, where Ej’
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FIGURE 2 Variations in systems modules with crystallinity for various models.

remains very close to E,’. Almost the entire change in modulus (E;') occurs in
the range of crystallinity between 90 to 1009, where dE;’/dX is positive and
very large.

In the parallel model (model A) on the other hand, the relationship between
the degree of crystallinity and E;’ is linear.

The responses of the mixed models (PS),, (SP)., (PS) 4, and (SP) 4 to changes
in the degree of crystallinity lie between those observed with the series and
parallel models.

From the plots of Figure 2, it can be seen that ateach level of crystallinity, the
maximum in modulus E;’ is obtained with the parallel model and the mini-
mum with the series model. Considering the schematic representation of the
six models shown in Figure 1, it is apparent that by adjusting the relative
dimensions of the blocks (i.e. by varying o, theratio of A to ¢) each of the four-
mixed models may vary between the simpler series and parallel models. Thus,
given a value of the system modulus E;" and the crystallinity ¥, it is possible
to fit all four models to the data by varying ¢. In other words, one value of the
system modulus is not sufficient to distinguish between the four models.

The expressions for tan 8, for the various models as a function of the degree
of crystallinity and the geometric parameter ¢ are given below. (Since these
equations are quite complicated, the dependence on crystallinity and o is
included implicitly through A and ¢ (A’ and ') to simplify the expressions.
Tan 3 for the crystalline phase is assumed to be zero.)
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Model A — parallel
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Plots of the variation of tan 85 with the degree of crystallinity corresponding
to these equations are givenin Figure 3. Asin the plots of £, we assumeavalue
of o = 1 to allow the demonstration of the general features of the dependence



14: 25 23 January 2011

Downl oaded At:

258 D. PREVORSEK AND R. H. BUTLER

of tan &; on crystallinity. The effect of variations in ¢ will be discussed below.
In the plots, tan 8, is normalized by tan 8 4 (tan 8 of the amorphous) so that we
plot tan 8./tan 84 versus crystallinity.

From the plots of tan §,/tan 8 4 shown in Figure 3 it can be seen that for the
parallel and crystal matrix models, tan 8, is very sensitive to changes in

TAN 35/TAN 8a

| - CRYSTALLINITY
FIGURE 3 Variations in system tan 8 with crystallinity for various models.

crystallinity in the range of low crystallinity (X = 0 to 0.4). When the degree
of crystallinity of the system reaches 509, tan §; is already very small and
changes rather insignificantly with further increases in crystallinity.

With the series and amorphous matrix models on the other hand, tan &; is
very high and relatively insensitive to changes in crystallinity in the range of
0 to 0.6. For values of X > 0.6, the ratio of tan §,/tan 5 4 decreases rapidly
reaching the maximum sensitivity (d (tan §/tan §4)/d(1 — X) max) at zero
degree of crystallinity. As in the case of the system modulus (E;'), each of the
mixed models may befitted to a simple value of tan 8, at a particular crystallinity
by varying the dimensions of the blocks (i.e. by varying o). Thus, the
determination of one of the independent properties E;’ or tan 8, is not sufficient
to distinguish between the four models, despite the fact that on the average,
the properties of models having a crystalline matrix differ considerably from
those having an amorphous matrix. This point is illustrated in Figure 4 for
systems having 50 % crystallinity where we show plots of tan §; as a function
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FIGURE 4 Variations in tan § with ¢ for crystalline and amorphous matrix models;
X = 50,

of ¢ for the crystalline and the amorphous matrix models. From the plots we
observe that the amorphous matrix models ((PS)4 and (SP),) for which
o >>0.6 (which represents ~93%, of all possible models) have tan 8/tan &4
> 1.0 while the majority of the crystalline matrix models (those for which
¢ < 1.7 which represents ~ 139, of all possible models) have tan 8;/tan 4 < 1.
Thus, one can use the magnitude of tan &, as a guideline for determining
which phase (amorphous or crystalline) forms the matrix.

In principle, a definite differentiation between the models having a crystal-
line matrix (PS), and (SP), from those having an amorphous matrix (PS) 4 and
(SP)4 can be made by measuring the two independent properties E;' and
tan 8, (e.g. on a vibron dynamic viscoelastometer), provided one knows the
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corresponding properties of the amorphous and crystalline phases. However,
since in many cases it is difficult to obtain these properties (i.e. the crystalline
and amorphous complex moduli) a reliable determination of the correct type
of model is often precluded.

Effect of Temperature on E;" and Tan §;

A very efficient method for distinguishing between amorphous and crystalline
matrix models involves the measurement of changes in E;’ and tan 8; in a
temperature interval involving a transition. This analysis can often be carried
out most accurately by examining the behavior of the polymer in a tempera-
ture interval involving the glass transition. Frequently, in this temperature
range, the effects are very large which is important for achieving good resolu-
tion. Furthermore, since the crystalline relaxation usually occurs considerably
above the glass transition temperature, it is often possible to study the effects
of a single relaxation of one phase on the whole system thus simplifying the
analysis.

The principle of the method applied to a single relaxation model conform-
ing to the Arrhenius temperature dependence is outlined below. For a single
relaxation model the following expressions are valid:

(Eu — Er)w?r}?

' = 13
E' = Ez + = (13)
+ _ (Eu — Er)or
S e (14)
Y
Tan 5 = Eu— Er)or, (15)

Er + Euw?r}?

There, Er and Eu are the relaxed and unrelaxed modulus, w is the frequency
and ry is the relaxation time.
In order to examine the temperature dependence of the above expressions,
we apply the Arrhenius relationship
H

T = T, €Xp =T (16)

Here H is the activation energy of the dispersion, 7, is a constant on the order
of magnitude of 10-'? sec, T is the absolute temperature and R is the gas
constant. By inserting the relationship (16) into Eqgs. (13), (14), and (15)
we obtain expressions through which the temperature dependence of the
dynamic-mechanical properties for such a system may be determined. To
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illustrate the typical temperature dependence for an amorphous polymer we
may apply these expressions by assuming that the polymer exhibits a maxi-
mum in tan & at 120°C and possesses relaxed and unrelaxed moduli of 108
and 10'° dynes/cm?2 respectively. (These values are of the right order of
magnitude for a major amorphous transition in a semi-crystalline polymer.)
Results of these calculations are presented in Figure 5 where weplot E', E”, and

£

I - —5
< a
F
o
~
£ 5
£ TAN a;
) 1% =
© =
=: 051
a
z —H2
a
Tt

- 4
|
100 150

T °C
FIGURE 5 E’, E”, and tan § versus temperature for single relaxation Arrhenius model
(one phase system).

tan 8 versus temperature. From the plots we see that the calculated behavior
is quite close to that exhibited by real amorphous polymers, namely, a large
tan § maximum (on the order of 5) and a modulus drop which occurs over a
temperature interval of approximately 20 degrees.

By treating this model material as the amorphous phase in a two phase
semi-crystalline system, we may examine the effects of load transfer between
the phases on the temperature variation of tan 8; and £,'. This may be done
by inserting the calculated temperature dependence of the amorphous proper-
ties (tan 84 and E,4’) into the equations (1 through 12) for the load transfer
models presented above. To do this, we assume a crystallinity (X) of 509, a
crystal modulus (£, of 100 x 1010 dynes/cm2, and a low temperature
(T —100°C) system modulus of 5 X 10! 0dynes/cm2. We then fit each of the
models to give the assumed system modulus at —100°C by determining the
load transfer factor ¢ for each. With the models thus completely defined, we
insert the temperature dependent amorphous properties (£, and tan 6 ,4) and
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calculate the resulting system temperature dependence. From these calcula-
tions we obtain the results shown in Figure 6, where we plottan 8;and E,’ versus
temperature for the various models.

Considering the plot of system modulus (E;") versus temperature shown in
Figure 6, it is apparent that the crystal matrix models ((PS), and (SP),) exhibit
a much lower drop in modulus on passing through the amorphous transition
than the amorphous matrix models ((PS)4 and (SP)4). The large difference
in the response of these classes of load transfer models is also illustrated in the
tan 8 versus temperature plot. Here, the crystal matrix models show a much
lower tan §, than the amorphous matrix models. Thus, we see that in general
the examination of property changes in the glass transition region provides an
easy distinction between the amorphous and crystalline matrix models.

The distinction between series-parallel and parallel-series arrangements is,
however, much less apparent. The difference between the responses of these

ALL MODELS CRYSTAL
MATRIX

5 /

/

AMORPHOUS
MA’/FR!)(

E's{IN 10 DYNE /CM?)

I I
o] 50 100 150 200
T °¢C

AMORPHOUS
" MATRIX

CRYSTAL
“MATRIX

L | L
0 50 100 150 200
T°C

FIGURE 6 E, and tan §; versus temperature for crystal matrix and amorphous matrix
models (two phase system).
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models (e.g. between (PS), and (SP),) in both tan §; and E;’ is negligible, and
thus temperature experiments would prove to be of little use in determining
the correct model for a particular system. It must be pointed out however,
that the necessity of such a differentiation is questionable since the physical
significance of making such a distinction is not understood at this time. Thus,
in cases where both the parallel-series and the series-parallel arrangements
appear to fit the experimental data, one should proceed by considering
solutions for both models.

Coupling Models from Diffusion Studies

The success in determining the appropriate coupling models by means of the
previously described methods depends strongly on the accuracy of the esti-
mates of E4, u, E4, r, Ec and the relaxation times associated with the transi-
tion. For many polymers this information is not readily available. In the
absence of such information it is possible to establish the nature of coupling
from a series of diffusion experiments carried out above the glass transition
temperature. This approach is based on the following considerations.

It has been shown that Eq. (17) holds for diffusion in amorphous
polymers in the rubbery state

mL - B+ 17
RT

Where Dy is the diffusion coefficient, R is the gas constant, B and C are
constants depending on the chemical structure of the polymer and penetrant,
and T is the absolute temperature.
It has also been shown that
B = 4H,

- 4Hs (18

where 4H, and 4Hy are respectively activation energies of viscous flow and
diffusion. In cases where the size of the diffusing molecule is comparable to
the size of the polymer segment that moves, H, = Hg and B = 1. This has
indeed been observed.

Consider now a diffusion process in a semi-crystalline polymer above the
glass transition temperature, where the crystalline phase is essentially im-
permeable for the diffusing molecules. For the *“microdiffusion” within an
amorphous domain, (17) is still applicable and can be written:

D
In E-; = _Bynrg + Cq (19)

where subscript “a’’ denotes that the particular quantities refer to the amor-
phous phase only. In order to obtain an analogus expression valid for the
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diffusion processes in the more complicated two phase system of semi-
crystalline polymers, one may apply the empirical Eq. (20):

D = (]Sam Da, (20)

where ¢, is the degree of amorphicity and “m™ is a factor depending on the
tortuosity of the permeable channels. It should be noted that if the geometrical
features of the permeable and impermeable phase are known, “m™ can be
computed with reasonable accuracy. Results of such calculations in the
literature correlate well with experimental determinations of “m™ and show
that ““m” falls in the range between 0.3 and unity.

Rewriting (20) in logarithmic form and accounting for the temperature
effects:

D D
In =2 = ming, + In =2 21
RT i RT (

and combining (21) with (19) we obtain
In L. — Balimg + Ca + ming (22)
RT = allna a a

Considering that », cannot be measured, it is desirable to define a relation-
ship between the sample viscosity () which can be measured, and the
amorphous viscosity (54). For this purpose we make use of

N = ¢a™a (23)

where ““n” is a constant related to the load transfer between the phases. It
follows from (22) and (23) that

/nR_DT = — Bo(—ninga + Iny) + Ca + minda (24)
which leads to:
In R% = — Balny + Ca + Balnda® + Ingg™ (25)
and:
D
/’1 ﬁ = _Ba,ln‘l] -+ Cu + /n (¢a"L+nBa) (26)

An inspection of (26) indicates the complex relationship between the structure
of the amorphous phase (Bg, Cg), degree of amorphicity (¢,), size and arrange-
ment of crystallites (), load distribution between phases (r) and viscosity of
the sample ().
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In applying Eq. (26) for the interpretation of the diffusion results in terms
of polymer structure (degree of crystallinity, size of crystallites, orientation of
the amorphous phase, etc.) or for the determination of the load transfer
coefficient “‘n”" it should be noted that:

1) Sample viscosity can be estimated from dynamic experiments by means

of E”/w where w = the frequency of the experiment.

2) Ca, Ba, ¢a, m and n are constants independent of temperature.

3) With samples of the same amorphous orientation, B, is independent

of ¢g.

RESULTS AND DISCUSSION
Coupling Models for Undrawn Nylon-6

A series of unoriented Nylon-6 samples of various degree of x-ray crystal-
linities was examined with respect to E’, E”, and tan 8 in the temperature range
between — 80° to + 150°C. The measurements were carried out at a frequency
of 110 cycles/sec by means of the Vibron type viscoelastometer. The pertinent
x-ray data and the values of (tan §) max of the « relaxation are given in
Table 1.

Since it is difficult to prepare specimens of Nylon-6 of very low crystallinity
and since such specimens cannot be examined over a wide temperature range
without changing the crystallinity, we include in the analysis which follows a
series of cross-linked Nylon-6 samples. These polymers were prepared with
small amounts of hexamethylene diamine and trimesic acids using the follow-
ing procedure:

Forty grams of mixtures of freshly distilled dry (50 p.p.m. water) e-capro-
lactam (CL) and various amounts of both hexamethylene diamine (HMDA)
and trimesic acid (TMA) were heated to 160°C under a stream of dry helium.
Subsequently, the tubes were sealed off (under helium) and allowed to

TABLE I

Degree of Crystallinity and (Tan 8) max for unoriented
Nylon-6 Polymers

Specimen Degree of (Tan ) max
Crystallinity (%)

1 35 0.15
2 42 0.14
3 45 0.12
4 50 0.10
5 55 0.08
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polymerize at 260°C for 48} hours. The products were then milled, water
extracted, vacuum dried, and compression molded into films of 5 mils
thickness for x-ray analysis and determination of viscoelastic properties. The
pertinent data relating to these films are presented in Table II.

TABLE II
Characteristics of Experimental Cross-linked Poly-caprolactams

Initial Composition X-ray Analysis

Sample % by weight (tan &) max
CL/TMA/HMDA % amorphous % e 9 8 o relaxation

1 97.5/1.0/1.5 47 17 36 0.18

2 92.5/3.0/4.5 47 16 37 0.22

3 90.0/4.0/6.0 68 8 24 0.38

4 87.5/5.0/7.5 ~ 100 0 0 0.78

5 85.0/6.0/9.0 ~ 100 0 0 0.92

6 100/ 0/ 0 45 50 5 0.13

The variation of tan 8 max («’ transition) with the degree of crystallinity for
the Nylon-6 films and the cross-linked polycaprolactams are plotted in Figure 7.
From these plots we observe that the general form of the variation of tan §
max with crystallinity closely resembles that of systems in which the crystal-
line phase forms the load-transfer matrix (see Figure 3). Thus, we assume that
for undrawn Nylon-6 the crystal matrix models apply. We also observe from
Figure 7 that the value of tan § max approaches a value of about one as the
crystallinity approaches 09, and thus, we assume that tan & max for the
amorphous phase is close to unity. With these observations, we proceed to
determine the value of the load transfer parameter ¢ for the parallel-series
crystal matrix model which applies to undrawn Nylon-6 at 509/ crystallinity.
That is, we fit the coupling model to the experimental data obtained.

For this purpose, we write the general equation relating the complex
modulus of the system (E,*) to the properties of the separate phases for the
parallel-series crystalline matrix model in which the crystalline phase shows
no relaxation:

Ep _ $a + (1 —¢) (? + p2) + igf o
E. A((l — ¢ (a? + B + ¢ + 24 (1 — ¢) a) vi=e @0

in this relation,

E. = modulus of the crystalline phase

_ Ed
E;
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FIGURE 7 Intensity of o’ peak in tan 8 versus amorphous content for various Nylon-6

polymers.
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We now apply this equation to temperatures below and above the amorphous
relaxation. Here 8 = 0 and a<1. Thus, the equation reduces to

* ’
E® B A+ (=2
E. E, ]
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Rewriting this by considering the definitions of the various parameters, we get

Eg’ EAI

el 4+ (1 — A
£~ "¢V
or
EA, 1 Ea,
Ea ] _—(1—A)) (28
E, a (Ec )
By applying this relationship below and above the amorphous relaxation, we
obtain
Edr 1 (Es'L -y )
Ec a c
and

EAIH ~ } (ES’H . (l _ A))
Ec o Ec

where the subscripts “L*’ and “ H** imply low and high temperature respectively.
Taking the ratio of these equations we obtain
EA’H — Es/H — (1 - ’\) E;
Edy EiL— (1 —MNE
Now, since we measure E; z and E; g and since E4 gy/E4 1 is related to tan
84 max (which we know) via

(29)

1 — (E4'H/E4'L)

2(E4'HIE4'L) '

(This equation is obtained from Eq. 19 by observing that tan 8 is
maximum at wry = (E4'u/E4'1)"?). We have thus determined a relationship
between A and the crystal modulus E, such that the experimental data
(Es 1JEs 1) is satisfied. To cast the relationship in more concrete terms, we
apply the experimentally determined values:

Ey'p, = 2.0 x 1019 dynes/cm2 (0°C)
Ed'ny = 0.65 x 10 dynes/cm2 (150°C)

tan 64 max =

tan 8, max = 1 = EA_,H ~ 0.17
EsaL
to obtain
Aol — 0.37 x 101w

E.
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Now, since A = vV ¢ (1 — X) and X = 0.5 (50% crystallinity)

0.37 x 1010)2
E.

Thus, given a value of the crystalline modulus, we can determine the coupling
parameter. However, reliable values of crystalline moduli are not available
since their measurement requires an a priori assumption regarding the load
transfer between the phases. Hence, we must obtain additional information if
the problem is to be solved.

For this purpose, we recall Eq. 27

Es* da+ (1 —¢)(a? + B2 + igp
E*_ o 28
E ((1_¢)2(02+52)+¢2+2¢(1_¢)a)+(1 ) &)

Applying the approximation used above, we obtain an expression for the
system loss (imaginary) modulus (E;")

we obtain ¢ = 2 (1 — (30)

Es” - _ EA”
o B =¢ £
or
Es”
= x 32
Rk (32)

Now E,” is related to E4 5 and E4'f, by Eq. 18.

v _(EdrL — Ed'n) or,
Ea” = 1+ wzv'yz (33)

If we now apply this equation at the temperature at which tan 8 is maximum,
we obtain
v _ (EdL—Ed'n)(Ed'n/E4D)'"?

I + (E4'n/E4'L)

Inserting the value of E4 g/E4’;, = 0.17
this reduces to

Eq

Eqs" = 029(E4'L)
On inserting this relation and the value of E,” into Eq. (32) we obtain
o= 041 X 1019/E, 1

Thus, we have obtained a relationship between the coupling parameter ¢ and
the low temperature (i.e. unrelaxed) amorphous modulus which must be
satisfied to be consistent with the experimental data. Recalling the relation-
ship determined above on the basis of system modulus data
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2
> (1_0.37 X 1010)
Ec

we see that we now have two equations in the three unknowns o, E4'z, and
E,. This relationship is presented in Figure 8 where we plot E.and E 4 j, versus o.
Thus, for example, given the value of E, we can determine the coupling
parameter ¢ and the low temperature amorphous modulus (E4 ).

To obtain an estimate of E. we observe that the effective value of E, for an
unoriented system is approximately given by the average of the modulus in
the direction of the polymer chains in the crystal (E;)) and that perpendicular
to it (E)).

For an estimate of the value of E; we consider Treloar’s® calculated
crystal modulus of E;, & 200 x 1010 dynes/cm2. Since the Treloar calculations
assume a fully extended chain in the crystal, this value obviously represents
the upper bound on Ej. The experimental values of Sakurada* (£ =~
20 x 1010 dynes/cm2) for Nylon-6 on the other hand, are based on the
assumption of a series model in an oriented system which, as we shall see
below, is incorrect and for reasons stated in the introduction we must regard
this value as a lower bound on E,. Using the results of our load transfer

E¢ {IN 10" DYNE /CM?)
Ea (IN 10'° DYNE/CM?)

Q y 1 0

05 10 L5 20
COUPLING FACTOR ¢

FIGURE 8 Unoriented Nylon-6: Plots of crystalline and amorphous modulus versus
coupling [actor ¢; values satisfying the experimental data.
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studies on oriented Nylon-6 we estimate the error of Sakurada to be on the
order of 209,. Thus, we imply that £, & 25 x 1010 dynes/cm2.

The value of the average transverse modulus (E)) is assumed, on the basis
of experimental data, to be on the order of 4 x 10!0 dynes/cm2. Thus, the
effective crystal modulus in unoriented systems (E;) is approximately 15 X
1010 dynes/cm?2. Using this value and the data of Figure 8, we arrive at the
following values for the coupling parameter ¢ and low temperature (unre-

laxed) amorphous modulus of
o= 1.88
Eyp =~ 022 x 1010 dynes/cm?

Thus, for undrawn Nylon-6 film of 509/ crystallinity we conclude that the
following coupling model is valid:

A = 1.88
[ A

A

this indicates a very inefficient structure with respect to the potential rein-
forcement of the system by the crystalline phase.

Coupling Model of Oriented Nylon-6 Fibers from Diffusion
Studies

The diffusion Eq. (26) was applied to a series of experimental Nylon-6
fibers. These were examined with respect to the degree of amorphous fraction,
coefficient of diffusion, sample viscosity, size of crystallites and degree of
orientation of the amorphous phase. This latter information was estimated by
means of the expression derived by Stein’

4= Xfd + (1 — X)[fada® (31

Here 4 is the measured birefringence, X is the degree of crystallinity, f, and f,
are the crystalline and amorphous orientation functions, and 4.° and 4,° are
the birefringences of a segment in the crystalline and amorphous phases. For
Nylon-6

4,5 = 4,° = 0.073

Values of £, defined as f; = 1/3 (3 cos2 ¢ — 1) were estimated by the method
of Dumbleton using the azimuthal width of the 200 reflections. The pertinent
data of these studies are summarized in Tables III and IV.
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TABLE 11

Amorphous and Crystalline Orientation Functions of Experimental
Nylon-6 Yarns

111 v \Y%
Half Angle 9° 10° 13°
(200) & (202 + 002)
Birefringence, 4 0469 L0515 L0528
Degree of Crystallinity, X 42 .49 57
Crystalline orientation function, 933 925 .888
fe
Amorphous orientation .409 .495 .503
function, fam
TABLE IV

Sample viscosity, coefficient of diffusion and degree of amorphicity
of experimental Nylon-6 fibers

Sample ¢ Y2 p " = E'fw ba

Symbol Co

1 144 .90 x 108poise .32
11 .140 .99 ’ .58
111 .085 .94 . .51
v 073 1.07 ' .46
Vv 107 .92 s 43

where  C, dye uptake in 10 minutes

Cw dye uptake at equilibrium
C, \2
D = diffusion constant, proportional to (al—)-o )
E” = loss modulus measured at 35°C, 95% R.H., 110 cps
w = 2= (frequency) = 2= (110)
¢a = amorphous volume fraction

Here it can be seen that in samples I, III, and V we have a series of fibers
of nearly equal viscosity (0.90, 0.94, and 0.92 x 10° poise respectively) and
different amorphicity, (0.32, 0.51, and 0.43 respectively). Considering further
that at least samples I and I1I have nearly equal total and amorphous orienta-
tion and consequently nearly equal B,, we can plot for these samples /n Dvs.
Ingg to obtain the value of the exponent (m + nBj;). The corresponding plot
shown in Figure 9 indicates a slope of —1.12. Consequently, we assume that
for this series

m + nBy = —1.12, (35)
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FIGURE 9 Logarithmic plot of diffusion coefficient versus degree of amorphicity ; sample
viscosity (E”/w) and amorphous orientation (i.e. B,) are constant.

Again referring to the data in Table IV we see that samples IV and V have
nearly the same amorphous content (.46 and .43 respectively). Assuming that
C, does not vary greatly between these samples we extract a value for B, by
calculating A/nD/Alny. The result is By = 2.4

Based on the x-ray data concerning the size of the crystallites we inferred
that within this series “m” should be considered constant at least as far as the
dimensions of the crystallites perpendicular to the fiber axis are concerned.
The maximum difference in crystallite size within the series is about 139
which is far too small to affect significantly the length of the path of the
diffusing molecules from sample to sample. From geometrical considerations
we then concluded that the path of penetrating molecules is approximately 1.5
times as long as it would be without the crystallites. This assumption leads to a
value of m = 0.5.

Following these considerations, we insert the values for B, and m into
Eq. (35) yielding

0.5 + n(24) = —1.12
or
n= —0.68

Returning to the basic Eq. (26) and inserting the values of parameters
(Bg, n, m) we obtain
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ln(%) = —24I(E"|w) + Ca + Ingg="12 (36)
Eq. (36) is then used to plot calculated and measured coefficients of
diffusion shown in Figure 10. Assuming a value of C,of 1.38 x 10! we were
able to obtain a nearly perfect fit of the results from fibers having nearly equal
amorphous orientation. This behavior was expected because of the known
sensitivity of B, to amorphous orientation. Thus establishing the validity of
(26) we proceed with the analysis of the coupling model from the extracted
value of “n™.

) (EXPERIMENT)

Cy
Com

{

05

Q21

Ol

o | ] i | L
o .01 (02 05 10 A5

C, 2
(g ) (cALCULATED)

FIGURE 10 Calculated and measured coefficient of diffusion for experimental Nylon-6
fibers.

From the magnitude of the tan & peak of the a’ transition for these fibers
(tan & & 0.11) and the plots of Figure 3, onecaninfer that these fibers conform
to a crystalline matrix model (either (SP). or (PS),). From considerations of
the anisotropy of modulus and tan 8 observed in drawn Nylon-6 systems, we
can also infer that the (PS), model is the more probable. For this model we
have
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'EET = _¢T 1\2 (37)
(4(1-%) %)

where ¢ is the vertical dimension of the amorphous block, ¢, is the degree of
amorphicity, and K = E;' /E4'.
In cases where K> 1, this equation reduces to
” " ¢a /\(]S /\
E'"JELS 2" _" =g (38)
¢ b
Such conditions obtain (i.e. E,/ [E4 >1) for temperatures above the o
relaxation, where we have also shown that

E" ~ Ea" ¢q "% for 0.3 <g, <0.6 (39)

Thus, combining the equations (38) and (39) we obtain an expression for the
load transfer parameter ¢ as a function of the amorphous fraction ¢g:

Es ”n
E4
Thus, for this series of fibers we conclude that

1
$a08 for0.3<¢, <0.6

X ¢q %% x ¢ which is valid for 0.3 <¢, <0.6

o~

To illustrate this variation of the load transfer parameter ¢ with varying
degrees of amorphicity we present schematic representations of the model
below.

c ¢ C ¥ : C
A A A
$a = 0.35 ba = 0.45 $a = 0.55
o=2 o= 17 o= 1.5

SUMMARY AND CONCLUSION

A new method is outlined to study the structure property relationship in
semicrystalline polymers. The proposed method involves: a) the character-
ization of structure in terms of the two phase amorphous-crystalline model
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(size, concentration, and orientation of the crystallites, etc.) b) the analysis of
mechanical coupling between phases in terms of Takayanagi! models, and
¢) the interpretation of mechanical properties assuming a two phase composite
system. It is expected that such a study will lead to a better understanding of
the nature of the phase boundary and thus provide the information which is
essential for the interpretation of the mechanical responses in terms of
morphological characteristics (degree of crystallinity, sizes of crystallites,
orientation, etc.).

The principles are reviewed for quantitative determination of the load
transfer characteristics between the amorphous and crystalline phase in terms
of Takayanagi models. A theory is developed to account for the temperature
dependence of various system models in a temperature interval involving a
transition of the low modulus (amorphous) phase. The derived equations
are applied to elucidate the load transfer characteristics of unoriented Nylon-6.
It is shown that 1) the a’ transition of this polymer involves a relaxation
mechanism which can be described well by a single relaxation process con-
forming to the Arrhenius temperature relation and 2) the unoriented structure
is very inefficient with regard to crystal reinforcement. Since the success of the
analysis of the temperature effects depends on the availability and accuracy of
the unrelaxed and relaxed moduli (Ey and Eg) of the amorphous phase as
well as on the relaxation spectrum associated with the transition, the applica-
bility of the method is rather limited.

An alternate approach to determine the coupling models is developed based
on the relationship between diffusion and viscoelastic characteristics of the
polymer. This approach, which does not require an accurate estimate of the
properties of a ‘“‘completely” amorphous polymer, is applied to a series of
oriented Nylon-6 fibers. The study, which confirms the validity of the derived
equation to describe the diffusion process in semicrystalline polymers above
the glass transition temperature, leads to a quantitative representation of the
“efficiency” of crystal reinforcement as a function of the degree of crystallinity.

In connection with the application of diffusion to study the nature of the
mechanical coupling between phases it must be pointed out that:

a) the diffusion of small molecules is one of the most powerful methods to
investigate the polymer structure.}

b) the diffusion process cannot be interpreted in terms of the results
obtained by means of standard characterization techniques.

+Specifically. the diffusion studies led to the concepts of

1) Various degrees of order (in contrast with a two phase system implied from x-ray
diffraction).

2) Fluctuations in density of the amorphous phase.

3) Existence of holes in the amorphous phase,

4) Distribution of hole dimensions.
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¢) the diffusion studies provided the information regarding the structure of
the amorphous phase and distribution of crystallites which complements the
data provided by standard characterization techniques.

Based on these considerations it is possible that the most important results
of the study presented lies in the development of a theory which makes
possible the investigation of effects of morphology of semicrystalline polymers
on their mechanical properties by means of an analysis involving the results of
diffusion, viscoelastic responses, and standard morphological characterization
techniques.
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